Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Struct Biotechnol J ; 18: 2100-2106, 2020.
Article in English | MEDLINE | ID: covidwho-2283789

ABSTRACT

ACE2 plays a critical role in SARS-CoV-2 infection to cause COVID-19 and SARS-CoV-2 spike protein binds to ACE2 and probably functionally inhibits ACE2 to aggravate the underlying diseases of COVID-19. The important factors that affect the severity and fatality of COVID-19 include patients' underlying diseases and ages. Therefore, particular care to the patients with underlying diseases is needed during the treatment of COVID-19 patients.

2.
Transl Res ; 244: 47-55, 2022 06.
Article in English | MEDLINE | ID: covidwho-1783792

ABSTRACT

Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. We studied patients admitted with acute COVID-19 (756 European-American and 398 African-American ancestry). Ancestral backgrounds were analyzed separately, and mortality after acute COVID-19 was the primary outcome. In European-American ancestry, we found that a haplotype of interferon regulatory factor 5 (IRF5) and alleles of protein kinase cGMP-dependent 1 (PRKG1) were associated with mortality from COVID-19. Interestingly, these were much stronger risk factors in younger patients (OR = 29.2 for PRKG1 in ages 45-54). Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in antiviral immunity.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Aged , Alleles , Antiviral Agents , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interferon-alpha/genetics , Lupus Erythematosus, Systemic/genetics , Middle Aged , Polymorphism, Single Nucleotide
3.
Gene Rep ; 27: 101608, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773330

ABSTRACT

Rapid emergence of covid-19 variants by continuous mutation made the world experience continuous waves of infections and as a result, a huge number of death-toll recorded so far. It is, therefore, very important to investigate the diversity and nature of the mutations in the SARS-CoV-2 genomes. In this study, the common mutations occurred in the whole genome sequences of SARS-CoV-2 variants of Bangladesh in a certain timeline were analyzed to better understand its status. Hence, a total of 78 complete genome sequences available in the NCBI database were obtained, aligned and further analyzed. Scattered Single Nucleotide Polymorphisms (SNPs) were identified throughout the genome of variants and common SNPs such as: 241:C>T in the 5'UTR of Open Reading Frame 1A (ORF1A), 3037: C>T in Non-structural Protein 3 (NSP3), 14,408: C>T in ORF6 and 23,402: A>G, 23,403: A>G in Spike Protein (S) were observed, but all of them were synonymous mutations. About 97% of the studied genomes showed a block of tri-nucleotide alteration (GGG>AAC), the most common non-synonymous mutation in the 28,881-28,883 location of the genome. This block results in two amino acid changes (203-204: RG>KR) in the SR rich motif of the nucleocapsid (N) protein of SARS-CoV-2, introducing a lysine in between serine and arginine. The N protein structure of the mutant was predicted through protein modeling. However, no observable difference was found between the mutant and the reference (Wuhan) protein. Further, the protein stability changes upon mutations were analyzed using the I-Mutant2.0 tool. The alteration of the arginine to lysine at the amino acid position 203, showed reduction of entropy, suggesting a possible impact on the overall stability of the N protein. The estimation of the non-synonymous to synonymous substitution ratio (dN/dS) were analyzed for the common mutations and the results showed that the overall mean distance among the N-protein variants were statistically significant, supporting the non-synonymous nature of the mutations. The phylogenetic analysis of the selected 78 genomes, compared with the most common genomic variants of this virus across the globe showed a distinct cluster for the analyzed Bangladeshi sequences. Further studies are warranted for conferring any plausible association of these mutations with the clinical manifestation.

4.
Gene Rep ; 26: 101537, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664941

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease (COVID-19) pandemic, has infected millions of people globally. Genetic variation and selective pressures lead to the accumulation of single nucleotide polymorphism (SNP) within the viral genome that may affect virulence, transmission rate, viral recognition and the efficacy of prophylactic and interventional measures. To address these concerns at the genomic level, we assessed the phylogeny and SNPs of the SARS-CoV-2 mutant population collected to date in Iran in relation to globally reported variants. Phylogenetic analysis of mutant strains revealed the occurrence of the variants known as B.1.1.7 (Alpha), B.1.525 (Eta), and B.1.617 (Delta) that appear to have delineated independently in Iran. SNP analysis of the Iranian sequences revealed that the mutations were predominantly positioned within the S protein-coding region, with most SNPs localizing to the S1 subunit. Seventeen S1-localizing SNPs occurred in the RNA binding domain that interacts with ACE2 of the host cell. Importantly, many of these SNPs are predicted to influence the binding of antibodies and anti-viral therapeutics, indicating that the adaptive host response appears to be imposing a selective pressure that is driving the evolution of the virus in this closed population through enhancing virulence. The SNPs detected within these mutant cohorts are addressed with respect to current prophylactic measures and therapeutic interventions.

5.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313431

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

6.
Gene Rep ; 24: 101236, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1267678

ABSTRACT

Since the first recorded case of the SARS-CoV-2, it has acquired several mutations in its genome while spreading throughout the globe. In this study, we investigated the significance of these mutations by analyzing the host miRNA binding and virus's internal ribosome entry site (IRES). Strikingly, we observed that due to the acquired mutations, five host miRNAs lost their affinity for targeting the viral genome, and another five can target the mutated viral genome. Moreover, functional enrichment analysis suggests that targets of both of these miRNAs might be involved in various host immune signaling pathways. Remarkably, we detected that three particular mutations in the IRES can disrupt its secondary structure which can consequently make the virus less functional. These results could be valuable in exploring the functional importance of the mutations of SARS-CoV-2 and could provide novel insights into the differences observed different parts of the world.

SELECTION OF CITATIONS
SEARCH DETAIL